Solving the Automated Warehouse Scenario using Answer Set Programming

Eric Waters
School of Computing and Augmented Intelligence
Arizona State University
eswaters @asu.edu

Problem Statement

The Automated Warehouse Scenario (Gebser and Ober-
meier 2019) provides a great opportunity to demonstrate the
capabilities of Answer Set Programming (ASP). This partic-
ular problem was created as part of the ASP Challenge 2019,
which was coordinated by the University of Genoa and the
Technische Universitat Wien. The aim of the challenge is to
bring in members of the ASP community and businesses to
solve real-world problems faced by various industries.

The scenario is representative of an automated retail ware-
house. The warehouse is defined as a rectangular grid of
tiles. On these tiles exists one or more robots that have
the capability of moving in any compass direction. Spread
across the warehouse are shelves that contain a given quan-
tity of products. There is a number of orders that demand
certain quantities of certain products. Robots can fit under
the shelves (if they are not already carrying one) in order to
pick them up. The goal is to have the robots deliver the prod-
ucts to the appropriate stations in their designated quantities,
therefore fulfilling the order. The order fulfillment should be
optimized such that it is completed in the minimum amount
of time possible. In this scenario, each robot is restricted to
one action (moving, picking up a shelf, putting down a shelf,
or delivering a product to a picking station) per unit of time.
Shelves must not be put down on tiles designated as a high-
way. Lastly, robots must be prevented from colliding with
each other.

Optimization scenarios such as the Automated Warehouse
are common in a wide range of industries. ASP is a use-
ful tool in solving such optimization problems as it allows
for the efficient modeling of complex constraints and prefer-
ences. The ASP Challenge 2019 provides an excellent plat-
form for members of the ASP community to showcase their
skills and collaborate with businesses to solve real-world
problems. With the rise of automation and the need for effi-
cient logistics in various industries, scenarios like the Auto-
mated Warehouse are becoming increasingly important.

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Project Background

Knowledge Representation and Reasoning (KRR) is a subset
of Atrtificial Intelligence that focuses on representing knowl-
edge in a way that computers can comprehend and utilize to
make decisions. Models of knowledge can be expressed us-
ing various techniques such as Propositional Logic or First-
Order Logic. KRR techniques can be used in various appli-
cations including robotics and natural language processing.

A major issue with first-order logic is that it is undecid-
able, i.e., no algorithm can always terminate and determine
whether or not an arbitrary first-order formula is satisfiable.
This is due to the fact that first-order logic can quantify vari-
ables over infinite domains. Answer Set Programming ad-
dresses this issue by providing a subset of first-order logic
that is tractable.

ASP allows the specifications of rules and constraints that
describe the problem. For example, in order to describe the
fact that the robot in the Automated Warehouse Scenario
must be located somewhere in the warehouse, the constraint
could be formalized as in Listing 1.

Listing 1: Robots at Valid Tiles

:— robot (R,X,Y,T), not node(_,X,Y).

This rule states that if a robot R is at position X and Y at
time T, and those X and Y values do not belong to a node
(warehouse tile), then the program is violated. ASP will not
return solutions that break this rule.

After the program is defined, the ASP solver will find all
solutions such that no constraints are violated. These solu-
tions are called stable models of the program.

For this Automated Warehouse Scenario, I use the ASP
language of Clingo and their ASP solver. Clingo is one
of many ASP languages/solvers and is known for its high-
performance solving and support for advanced features such
as aggregates and optimization, which proves very useful
for the Automated Warehouse Scenario. There may be thou-
sands of solutions to the scenario, but the desired solution is
the one that has the fewest amount of actions in the smallest
number of units of time.



Approach to Solving

My approach to solving the Automated Warehouse Scenario
is a combination of several techniques.

The first technique is the Generate-Define-Test method as
explained by Dr. Joohyung Lee in his lectures on Answer
Set Programming (Lee 2023a). This separates the process of
writing an ASP program into three parts.

1. Generate: In this stage, I generate all scenarios. To put
this in terms of the Automated Warehouse Scenario, this
would mean that robots perform all possible actions. They
move everywhere, pick up every shelf, etc. This is also
called generating a “’search space”.

2. Define: In this stage, I define new fluents. Fluents are
atoms that depend on the state of the program. For ex-
ample, I create a fluent called robot(R,X,Y,T) which says
that a robot R is located at position (X,Y) at time T. I do
the same for shelves, products, orders, highways, etc.

3. Test: In this stage, I write constraints to invalidate ele-
ments of the search space that I do not want to be possi-
ble. For example, refer back to Listing 1 where I write the
constraint that a robot must be within the pre-defined grid
of warehouse tiles.

The next technique comes from Dr. Joohyung Lee in his
lectures on Reasoning about Actions (Lee 2023b). In these
lectures, he explains how to describe actions in Answer Set
Programming. For example, how would one formalize the
action of the robot moving? Lee explains the idea of tran-
sition systems, which are directed graphs in which the ver-
tices correspond with states and the edges correspond with
actions. Essentially what I have created for the Automated
Warehouse Scenario is a very complex transition system.
There is an initial provided state. If actions occur, such as
a robot moving, that action transitions the program to a new
state. The goal state is the one in which all of the products
are delivered to their appropriate picking stations with the
least amount of actions and time elapsed.

Defining this transition system for the Automated Ware-
house Scenario was a complex process and will be better
understood if broken down into several sections.

The Initial State

The initial states of the program were provided by ASP
Challenge 2019. These were five test scenarios of different
initial configurations of the warehouse.

* The warehouse was defined as a 4x4 grid.

* Some of these tiles were marked as highways, which are
locations in which the robot must not put down a shelf in
order to allow other robots to move through it more easily.

* Some tiles were designated as picking stations. These tiles
are the ones where the robot must deliver the shelves con-
taining the products.

* A number of robots and their initial locations were de-
fined.

¢ A number of shelves and their initial locations were de-
fined.

Figure 1: One of the initial configurations for the warehouse.
Squares labeled with R represent robots. Circles labeled with
S represent shelves. Yellow-striped tiles represent picking
stations. Red tiles represent highways.

* A number of products were defined. This included which
shelf the product was located on and how many units of
that product existed on that shelf.

¢ A few orders were defined. The order included:

— Which products were to be included in the order
— The quantity of each product to be included in the order
— The picking station where the ordered must be fulfilled

One of the initial configurations is shown in Figure 1. I
took this initial configuration and turned them into my own
fluents. For example, for the initialization of the location of
the robots, I created the rule shown in Listing 2.

Listing 2: Robot Initialization
init (object (node,1l),value(at,pair(l,1))).
robot (R,X,Y,0) :— init (object (robot,R),value
(at,pair(X,Y))).

The first line, provided by ASP Challenge 2019, is their way
of providing the initialization. To make this easier for my
program to handle, I turned it into a robot(R,X,Y,T) fluent
where R is the ID of the robot and X and Y are the coordi-
nates of its location at time T. I followed this same principle
for all of the initialized objects.

Domain-Independent Axioms

Regardless of the problem at hand, there are certain axioms
that should be defined in order to create a robust transition
system.

Fluents are Unique and Guaranteed to Exist At each
time step T, each fluent should exist and be unique. In terms
of the Automated Warehouse Problem, an example is the
idea that each robot should be in exactly one location at each
time T. The rule to represent this idea is shown in Listing 3.

Listing 3: Robots Guaranteed to Exist and Unique

:— not 1 {robot(R,X,Y,T)} 1, robot(R), T=0..
m.



Actions May or May Not Happen At each time step T,
each action might occur depending on some specified crite-
ria. This allows Clingo to consider all possibilities of valid
actions in order to search for all potential solutions to the
problem. For example, consider the following rule in List-
ing 4:

Listing 4: Robots May or May Not Pick Up a Shelf

{occurs (object (robot,R),pickup,T)} :— robot (
R,X,Y,T-1), shelf(S,X,Y,T-1), T=1..m.

This rule states that if a robot R is at position (X,Y) at time
T-1 and there is also a shelf at that same (X,Y) location at
time T-1, the robot may or may not pick up the shelf at time
T. Similar rules were created for all other possible actions.

The Commonsense Law of Inertia This law of inertia
simply defines the states of the program if an action is not
executed. For example, if a robot does not perform a move
action, it should stay in its same location at the next time
step T. This rule is shown in Listing 5.

Listing 5: Robots Stay In Place Unless Moved
{robot (R, X,Y,T+1)} :— robot(R,X,Y,T), T<m.

Similar rules were defined for all other fluents in order to
specify their states at the next time step if no action occurs.

Prerequisite Conditions and Effects of Actions

In this section, I define the criteria that must be met in order
for a specific action to occur. For example, shown in Listing
6 are the effects and rules for a robot moving:

Listing 6: Definition of Robot Movement

robot (R, X+Dx,Y+Dy,T) :- robot(R,X,Y,T-1),
occurs (object (robot, R) ,move (Dx,Dy), T) .

This rule states that a robot R will update its position to
(X+Dx,Y+Dy) at time T if the robot R exists at (X,Y) at
time T-1 and the move(Dx,Dy) action occurs at time T. Sim-
ilar rules were defined for the other actions (picking up a
shelf, putting down a shelf, and delivering products).

State Constraints

This section of the program defines states that should be
impossible. This is the "Test” stage outlined in the afore-
mentioned Generate-Define-Test methodology. It is crucial
to invalidate stable models that do not meet the criteria of
the problem at hand. For example, Listing 7 is a constraint
that prevents two different robots from being in the same
location at the same time (a collision):

Listing 7: Two Robots Cannot Collide
:— robot (R1,X,Y,T), robot(R2,X,Y,T), R1!=R2.
Below is the list of the constraints that I used in order to
define impossibilities in my program:

* Robots cannot be located at invalid positions in the ware-
house

* Two robots cannot be in the same position at the same
time (collision)

* Robots cannot cross (switch places) - this would also rep-
resent a collision

e If a robot carries a shelf, no other shelf can be at the same
location at the same time (shelf collision)

* A robot cannot be in two different positions at the same
time

* A shelf cannot be in a different position as a robot if that
robot is carrying that shelf

* A robot cannot perform more than one action per time
step

* A product cannot have two different quantities at the same
time step

* An order item cannot have two different remaining quan-
tities needed at the same time step

Goal Constraint and Optimization

In this section, the goal of the problem was defined. The goal
was to have all of the orders fulfilled by a given time T, i.e.,
the remaining quantities for each order item must be zero. In
order to optimize the problem, the number of actions A must
be kept to a minimum. This was achieved using the rules in
Listing 8.

Listing 8: Fulfill Orders and Minimize Actions
:— orderItem(0O,I,U,T), U>0, T=m.
#minimize {1,R,A,T occurs (object (robot,R),
A,T)}.

Results and Analysis

The program functions as expected and provides the opti-
mal set of actions to deliver all of the necessary products
in their appropriate quantities to the appropriate picking sta-
tions in the least amount of time. The output of the program
for the first test scenario provided by ASP Challenge 2019
is shown in Figure 2. Notice how the program took just over
two seconds to complete on a 16-thread processor. This is a
reasonable amount of time for the optimal action plan to be
found in a real-world warehouse, especially considering the
time wasted if a non-optimal plan were to be followed. This
demonstrates that Answer Set Programming is a viable and
effective option for discovering optimal solutions to com-
plex logistical problems. Furthermore, the program is very
manageable to write, with only 90 lines of code including
comments or 53 lines of code without comments. Clingo has
enabled the solving of this Automated Warehouse Problem
to be efficient and concise.

Conclusion

In this work, I demonstrate the capabilities of Knowledge
Representation and Reasoning (KRR) and Answer Set Pro-
gramming (ASP) to solve a complex logistical problem, the
Automated Warehouse Scenario provided by the ASP Chal-
lenge 2019. ASP is an ideal tool for addressing such opti-
mization problems because they allow an efficient means of
modeling the constraints and rules.



clingo version 5.4.8

Reading from programs/project/project.lp ...
Solving..

Answer: 1
occurs(object(robot,1),move(-1,8),1)
occurs(object(robot,2),move(-1,8),1)
occurs(object(robot,2),pickup,2)
occurs(object(robot,1),move(-1,8),3)
occurs(object(robot,2),move(8,1),3)
occurs(object(robot,1),pickup,4)
occurs(object(robot,2),deliver(l1,3,4),4)
occurs(object(robot,1),move(-1,8),5)
occurs(object(robot,2),move(8,-1),5)
occurs(object(robot,2),putdown,6)
occurs(object(robot,1),deliver(1,1,1),6)
occurs(object(robot,2),move(1,8),7)
occurs(object(robot,1), putdown,7)
occurs(object(robot,2),move(1,8),8)
occurs(object(robot,1),move(8,-1),8)
occurs(object(robot,1),move(1,8),9)
occurs(object(robot,2),pickup,9)
occurs(object(robot,2),move(8,-1),18)
occurs(object(robot,1),pickup,1@)
occurs(object(robot,1),move(1,8),11)
occurs(object(robot,2),deliver(3,4,1),11)
occurs(object(robot,2),move(1,8),12)
occurs(object(robot,1),move(8,-1),12)
occurs(object(robot,1),deliver(2,2,1),13)
Optimization: 24

OPTIMUM FOUND

Models 01
Optimum I yes
Optimization : 24
Calls 1
Time : 2.412s (Solving: 1.84s 1st Model: 8.93s Unsat: 8.12s)
CPU Time : 13.141s
Threads : 16 (Winner: 2)

Figure 2: The output of the Clingo program, an optimized
action plan for the first provided test scenario. It can be done
in 24 actions and 13 time steps.

The approach to solving this problem using ASP is a
combination of several techniques, including the Generate-
Define-Test method and the idea of describing actions. Care-
ful attention to detail is required when performing Answer
Set Programming. All impossible states must be considered
and properly defined. Furthermore, all actions must be ex-
plicitly defined, including their preconditions and effects.

The program functions as expected and provides the op-
timal set of actions to deliver all of the necessary products
in their appropriate quantities to the appropriate picking sta-
tions in the least amount of time. The output of the program
for the first test scenario provided by ASP Challenge 2019
shows that the program took just over two seconds to com-
plete on a 16-thread processor. This is a reasonable amount
of time for the optimal action plan to be found in a real-
world warehouse, especially considering the time wasted if
a non-optimal plan were to be followed.

Opportunities for Future Work

Although the program provides the optimal solution to the
Automated Warehouse Scenario, there are areas where fu-
ture work could further enhance the program’s effectiveness
in a real-world scenario.

First, the orientation of a real warehouse is not necessarily
static. If the warehouse or the inventory is to change, there

should be little to no modifications required to the code.
However, in this program, the initial orientation of the ware-
house, the products, and the orders must be carefully and
explicitly defined. Either programs would need to be written
to automatically generate the new warehouse and product
orientations or the program itself would have to be able to
handle these dynamics itself.

Additionally, more testing would have to be done in terms
of the scalability of this program. The provided test sce-
narios are only 4x4 grids, which is unrealistic; real-world
warehouses are much larger and have many more products
and complexities. Testing on real-world scenarios and fur-
ther optimization would be necessary to implement this for
an organization.

In general, the Automated Warehouse Scenario is an over-
simplification of the complexities and scale of a real-world
warehouse. Those complexities would need to be accurately
represented in the system in order for it to be implemented in
practice. However, this program serves as a proof of concept
that Answer Set Programming is indeed a viable option for
optimizing complex logistical problems and should be con-
sidered as an option by industries attempting to implement
solutions to similar problems.

References
Gebser, M., and Obermeier, P. 2019. Asp challenge prob-
lem: Automated warehouse scenario.

Lee, J. 2023a. Practice of answer set programming. Lecture
video series for Knowledge Representation and Reasoning
course.

Lee, J. 2023b. Reasoning about actions. Lecture video series
for Knowledge Representation and Reasoning course.



