
A Data Processing Pipeline with Kafka, Neo4j, and Kubernetes for Distributed
Graph Algorithm Processing

Eric Waters
Arizona State University

1 Introduction

Per the trend of exponentially increasing volumes of data
available, it is becoming increasingly important to implement
ways to efficiently store, manage, and process said data. Fur-
thermore, streaming data is becoming more common as the
world continues to collect data at regular intervals through
means such as IoT devices or smartphones. For this case study,
the task at hand is to create a data processing pipeline that
will support a taxi business. The data will come from a large
geospatial dataset of taxi trips from the NYC Yellow Cap
Trip dataset [9]. The taxi trip data will be streamed into the
platform. At a later time, PageRank [13] and Breadth-First
Search [14] algorithms will be run on the data.

The PageRank algorithm was developed by Google in order
to assess the importance of various pages on the web. A web
page is more important if many other important pages contain
links to that page. In the case of the taxi cab dataset, this
will find pickup and drop-off locations that are crucial to the
business.

The Breath-First Search algorithm is a simple graph-
traversal algorithm that explores all nodes at the current level
before proceeding to the next. For the taxi cab dataset, this
algorithm will explore all other pickup and drop-off locations
starting from a designated location.

The ultimate goal of this project is to allow the taxi trip
data to be streamed into a distributed data pipeline such that
the taxi trips are automatically inserted into a database. Then,
the graph processing algorithms can be run in the distributed
environment.

2 Methodology

2.1 Technology Used
The data will be stored in Neo4j, a popular native graph
database that supports ACID-compliant transactions [4]. The
dataset is mainly composed of locations and taxi trips to and
from those locations. The locations are stored as nodes in

Figure 1: The Architecture of the Data Processing Pipeline

Neo4j and the trips are stored as relationships between those
nodes. Each trip has a distance, fare amount, pickup time, and
dropoff time.

Apache Kafka is a distributed messaging queue system that
has the ability to handle massive volumes of data streams [11].
It was originally developed by LinkedIn and later open-
sourced and released to the Apache Software Foundation.
In this context, Kafka will be used to feed the graph data from
the Yellow Cab Trip dataset into other components of the
system.

Kubernetes is a tool for managing, running, and scaling con-
tainerized applications [6]. In the system to be developed in
this paper, Kubernetes will be used to orchestrate the different
processes involved in the pipeline. The smallest execution unit
in Kubernetes, a Pod, is a group of one or several container-
ized applications. There will be Pods for Kafka, Zookeeper
(the master coordinator for Kafka), Kafka-Connect (a tool for
connecting Kafka with other systems), and Neo4j. Kubernetes
ensures that these Pods remain healthy and has the ability to
dynamically adjust the amount of replicas in order to react
to increased traffic or even heal Pods if they stop function-
ing properly. The architecture for the system can be seen in
Figure 1.

Lastly, since Kubernetes typically runs on multiple systems

1



and requires a significant amount of resources, Minikube will
be used. Minikube is a tool to run a Kubernetes environment
on a single machine [12]. Although the use of Minikube de-
feats the purpose of Kubernetes, which is to distribute and
manage containers across multiple machines, it is highly use-
ful for development. Developers can test their deployments
using Minikube before it is deployed into production. And,
in this case, students can learn to deploy their distributed sys-
tems without requiring access to a great deal of computational
resources.

2.2 Deploying Kafka and Zookeeper

In order to deploy Kafka into a Kubernetes cluster, one must
understand the concept of Deployments and Services within
Kubernetes. Deployments are the means through which the
developer specifies the desired state of the Kubernetes Pod. In
this case, two deployments were specified: one for Kafka and
another for Zookeeper [10]. The reason for grouping together
Kafka and Zookeeper is that Zookeeper is a coordination ser-
vice that enables Kafka to be distributed. It keeps track of
the Kafka broker nodes, elects certain brokers to be leaders,
stores metadata about the partitioning, and more. Confluent, a
company that provides tools for real-time data processing [1],
has Docker images (easy-to-use pre-packaged environments)
for both Kafka and Zookeeper. These docker images do all
the work for specifying the environments for the deployments.
Services, on the other hand, are a means of accessing the de-
ployed Pods. As the Pods can be removed, added, or updated,
their IP addresses often change. Services handle the work
of identifying the current addresses of the Pods and make
communicating with the Pods simple. A Kafka service is
specified that speaks with the Kafka Deployment Pod over
the TCP protocol. Similarly, a Zookeeper Service is delegated
to handle communication with the ZooKeeper Deployment
Pod. These deployments and services are declared using yaml
configuration files.

2.3 Deploying Neo4j

As mentioned before, the graph database being used to store
the taxi trip data will be Neo4j. For this step, Helm [2], a pack-
age manager for Kubernetes, will be used to install the Neo4j
database into a containerized environment so that it can then
be easily deployed as a Pod. Additionally, the Neo4j Graph
Data Science (GDS) [5] plugin will be installed. The GDS
plugin provides pre-packaged algorithms for graphs. In this
case, GDS will be used for the PageRank and Breadth-First
Search algorithms. Helm deploys Neo4j as a StatefulSet, a
special type of Kubernetes resource that supports persistent
storage and more stable network identities. Then, a Neo4j ser-
vice is specified that enables communication with the Neo4j
database.

2.4 Connecting Kafka and Neo4j

Kafka Connect [3] is a tool for integrating Kafka with other
systems. In this case, Kafka Connect will be used to convert
messages within Kafka topics into Neo4j insert statements.

An example of a message sent to the Kafka topic is shown
in Listing 1.

Listing 1: An Example Kafka Message
{"trip_distance":1.84, "PULocationID":78,
"DOLocationID":242, "fare_amount":10.66}

In the Kafka Connector, a Cypher (the query language for
Neo4j) statement is defined as a template. When the Kafka
messages are consumed, the various parameters are placed
into this query template so that the data is properly inserted
into the database. The template used is shown in Listing 2.

Listing 2: The Neo4j Cypher Insert Statement
MERGE
(p:Location {name: toInteger(event.PULocationID)})
MERGE
(d:Location {name: toInteger(event.DOLocationID)})
MERGE
(p)-
[:TRIP {distance: toFloat(event.trip_distance),
fare: toFloat(event.fare_amount)}]
->(d)

With all of these pieces configured, the trip data can be
streamed into the Kafka topics which are then automatically
inserted into the database.

3 Results

3.1 Testing Kafka

In order to test if the Kafka Pods were working properly,
Kafkacat was used. Kafkacat [8] is a tool for debugging and
testing Kafka deployments. The steps to test the deployment
were as follows:

1. Create and deploy a Kafkacat Pod into the Kubernetes
cluster

2. Connect to the Kafka Test Pod

3. Produce a test message

4. Consume the test message

The output of the test can be seen in Figure 2. The message
It’s working! was produced into the Kafka service under the
topic test-topic. Then, upon subscribing to the test-topic, the
message can be seen.

2



Figure 2: A Message Being Produced and Consumed Using
Kafkacat

3.2 Testing Neo4j

Testing to see if the Neo4j Deployment was running properly
was simple. Neo4j provides an interface called Neo4j Browser
that can be opened locally. It provides an interface to query
the data and visualize the results. Ensuring that Neo4j was
working properly was as simple as opening Neo4j Browser
at localhost:7474/browser (7474 was specified as the Neo4j-
http port in the Kubernetes setup) and ensuring that the GDS
plugin is properly installed with a simple GDS query as shown
in Listing 3.

Listing 3: A Neo4j GDS Test Query
CALL gds.graph.exists(’gds_graph’)
YIELD exists RETURN exists

This query is convenient to test the database because if
GDS is not properly installed, it will throw an error saying
that there is no method gds.graph.exists.

3.3 Testing the Entire Pipeline

In order to test the whole pipeline, the following process was
followed. First, the taxi data was loaded into a Python script.
In order to make the size of the dataset manageable, the data
was filtered to only include trips in the Bronx. Then, each row
of the data set was converted into a JSON object and sent to
Kafka. Next, the Neo4j database was queried with Cypher to
show that the data had been successfully inserted into the data
(see Figure 3). Lastly, the PageRank and Breadth-First Search
algorithms were run and verified to have the correct values.

Figure 3: The Taxi Data Successfully Loaded into Neo4j

4 Discussion

The results of the project indicate that the use of Kubernetes,
Kafka, and Neo4j is a powerful combination of tools to create
a streaming data processing pipeline. The pipeline is able
to keep the database current in real-time and allows for dis-
tributed processing of the PageRank and Breath-First Search
algorithms. The use of these distributed components will
allow the system to handle moments of higher-than-usual
demand during busy times such as holidays.

Future avenues for this project should include the real-time
processing of the graph algorithms used. In this project, the
only events happening in real time are the insertion of the taxi
data into the database. The graph algorithms are processed
manually at the developer’s time of choosing. Doing this
processing in real-time could provide more immediate and
useful results.

In addition, future work could include implementing the
functionality for different types of data, such as document-
based data or time-series data. It could also involve differ-
ent algorithms or streaming data platforms such as Apache
Flink [7] to carry out the computation. Furthermore, instead
of using a private cloud approach, the processing could be
offloaded to the public cloud in order to reduce the computa-
tional resources required.

5 Conclusion

This work explored an approach to providing real-time data
support for a taxi cab company. Apache Kafka was used as the
messaging queue service to hold the data and enable greater
flexibility in times of high demand. Neo4j was used as the
database to store the graph data and provide out-of-the-box
PageRank and Breadth-First Search functionality through its
popular Graph Data Science plugin. Kafka Connect was used
to translate the Kafka messages into Cypher queries for the
Neo4j database to insert the data in real time. And finally,
Kubernetes was used to orchestrate these various containers,
providing the ability to scale up and down according to de-
mand. Although this project was developed in Minibase for
demonstrative purposes, the system serves as a proof of con-
cept for a solution to be implemented in practice. Demand
for streaming data processing pipelines is becoming common-
place in the industry and the search for optimal solutions to
similar problems is crucial for meeting business needs.

References

[1] Confluent. https://www.confluent.io/. Accessed:
2023-04-24.

[2] Helm. https://helm.sh/. Accessed: 2023-04-24.

3

https://www.confluent.io/
https://helm.sh/


[3] Kafka connect. https://docs.confluent.io/
platform/current/connect/index.html. Ac-
cessed: 2023-04-24.

[4] Neo4j graph data platform | graph database management
system. https://neo4j.com/. Accessed: 2023-04-24.

[5] The neo4j graph data science library manual v2.3 -
neo4j graph data science. https://neo4j.com/docs/
graph-data-science/current/.

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
Communications of the ACM, 59(5):50–57, 2016.

[7] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink™: Stream and batch processing in a single engine.
IEEE Data Eng. Bull., 38:28–38, 2015.

[8] Edenhill. Edenhill/kcat: Generic command line non-
jvm apache kafka producer and consumer. https://
github.com/edenhill/kcat.

[9] Elemento. Nyc yellow taxi trip data.
https://www.kaggle.com/datasets/elemento/
nyc-yellow-taxi-trip-data.

[10] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Techni-
cal Conference, USENIXATC’10, page 11, USA, 2010.
USENIX Association.

[11] Jay Kreps. Kafka : a distributed messaging system for
log processing. 2011.

[12] Ruchika Muddinagiri, Shubham Ambavane, and Sim-
ran Bayas. Self-hosted kubernetes: Deploying docker
containers locally with minikube. In 2019 International
Conference on Innovative Trends and Advances in En-
gineering and Technology (ICITAET), pages 239–243,
2019.

[13] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking : Bringing
order to the web. In The Web Conference, 1999.

[14] Konrad Zuse. Der plankalkül. In Konrad Zuse Internet
Archive, pages 96–105, 1972.

4

https://docs.confluent.io/platform/current/connect/index.html
https://docs.confluent.io/platform/current/connect/index.html
https://neo4j.com/
https://neo4j.com/docs/graph-data-science/current/
https://neo4j.com/docs/graph-data-science/current/
https://github.com/edenhill/kcat
https://github.com/edenhill/kcat
https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data
https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data

	Introduction
	Methodology
	Technology Used
	Deploying Kafka and Zookeeper
	Deploying Neo4j
	Connecting Kafka and Neo4j

	Results
	Testing Kafka
	Testing Neo4j
	Testing the Entire Pipeline

	Discussion
	Conclusion

