
Automated Detection of Phishing Attacks using Machine
Learning Techniques

Eric Waters
eswaters@asu.edu

School of Computing and Augmented Intelligence
Arizona State University
Tempe, Arizona, USA

ABSTRACT
Despite conducting an abundance of sensitive financial transac-
tions and personal business on it, the internet is not always a safe
place. Attackers will continue to invent clever ways to gain access
to people’s credentials and steal their information and/or resources.
One popular type of attack is phishing, a type of social engineering
where an adversary clones a website and sends the victim a URL to
it, anticipating that they will enter their real credentials or other
sensitive information into this fake website. These cloned websites
often go up and downwithin days to avoid detection, and there is no
single solution to stop it. Furthermore, it is very difficult for authori-
ties to track down the attackers behind phishing websites due to the
natural anonymity of the internet. One promising solution is the
utilization of data mining techniques to automatically detect and
warn users of phishing attacks by looking very closely at the URL
that the user is about to click. Since these attackers are mimicking
the URLs of legitimate enterprises, they often employ techniques
of URL trickery that can be detected by machine learning models
that have seen many of these false URLs. Furthermore, the content
on these web pages and other attributes of these websites can be
inspected by a computer algorithm to gain better insight into their
legitimacy. These programs can then warn or even prevent the user
from going to a potentially malicious website. This technique is far
from perfect, as an attacker may take a novel approach to create
their fake URL and slip through the cracks of the phishing detection
model. However, if high accuracy and precision can be achieved, it
could save thousands to millions of people from becoming victims
of phishing attacks.

In this article, I use a dataset containing thousands of phishing
and legitimate websites to train several different machine learning
models. I then employ techniques to reduce the number of phishing
websites that were misclassified as legitimate, as this is the primary
scenario to be avoided when creating a system designed to make
the internet safer. From the results, I found that the best-performing
model was an ensemble of nine different classifiers, where most of
the models in the ensemble were tuned to reduce the false positive
rate.

1 INTRODUCTION
It is crucial that the internet is safe enough for people to use it for
conducting business that involves their personal information such
as banking credentials or social security numbers. However, since
this information can be used by someone else for their own gain,
there will likely always be someone trying to steal it. A popular
attack is phishing, a type of social engineering where an adver-
sary clones a website that the victim uses and sends the victim a

URL to the clone, anticipating that they will enter their real creden-
tials/information into this fake website. These cloned websites often
go up and down within days to avoid detection, and there is no
single solution to stopping it. And although phishing is not a new
form of attack by any means, its effectiveness is only increasing.
In fact, a study by the Ponemon Institute surveyed 591 IT organi-
zations in the US and found that the cost of phishing more than
tripled since 2015, increasing from an average cost per business of
3.8 million to 14.8 million in 2021 [3].

There have been many attempts by companies to prevent losses
by educating their employees. It is becoming common for compa-
nies to conduct "phishing tests", where employees are sent a fake
phishing attack attempt. The employees simply are to not click on
the URL and are encouraged to report the email. If they do click
on the URL, they fail the test and may have to complete phishing
training. Given that employees are often made aware that they are
subject to phishing testing at any time, one would think that the
number of people failing the phishing test would be few and far be-
tween. However, Proofpoint’s 2021 State of the Phish Report found
that the average failure rate on phishing tests was a whopping
11% [9].

This 11% figure may seem absurdly high to someone who is tech-
savvy, but the truth is that the average internet user is oblivious to
these types of attacks. In 2021 when US workers were surveyed the
question "What is Phishing?", only 52% got the answer correct [9].
This is precisely why phishing attacks continue to perform well,
despite being one of the older tricks in the book: users of the internet
continue to be uneducated about the types of attacks that may be
used on them. Companies have tried to educate their workforces,
but this can only help so much.

Since educating everybody seems not to be the most effective
option, another solution is to develop systems that do the work for
the user by either preventing them from clicking on a suspicious link
or warning them before they are able to do so. There are currently
two primary techniques in place to accomplish this.

The Blacklist Approach is where any URL that a user is going to
proceed to is automatically compared with a list of known phishing
URLs. A fraudulent website would be added to the list as soon
enough people report it to be phishing. The clear issue with this
approach is that there is a gap in time in which the attacker has
effectiveness before the URL is added to the list of known phishing
URLs. As new phishing websites are being added frequently, this
list cannot possibly cover every phishing website on the internet.
Although it is far better than having no protection at all, a better
approach is needed.



Eric Waters

The Heuristic Approach takes characteristics of the website or
URL itself in order to guess if it is phishy. This has the advantage
over the Blacklist approach in the sense that it is able to deter-
mine if a brand-new website is phishy without anyone having to
report it. Determining which features to take into consideration
and building appropriate models to learn those features determines
the effectiveness of this method.

2 RELATEDWORKS
The most important aspect of the heuristic approach is the features
that are extracted from the URLs and potentially malicious websites.
What features are common to most phishing websites? Mohammad
et. al [2012] explored these features in detail. They gathered 2500
phishing URLs from the PhishTank [8] archive and used JavaScript
and PHP scripts to extract address bar features, abnormal-based
features, HTML/JavaScript-based features, and domain-based fea-
tures. They then analyzed how often each feature appears in the
phishing URLs to determine which features were most influential.
These 17 features were turned into rules that were then used to
create a database of both phishing and legitimate websites for the
training of machine learning models to perform automatic phishing
detection.

Mohammad et. al [2014b] used the same dataset to train a feed-
forward neural network with one hidden layer. This neural network
was able to predict with 90-92% accuracy whether or not an arbi-
trary website is phishing. Mohammad et. al [2014a] also tried a
different approach of rule-based classification algorithms such as
RIPPER, PRISM, C4.5, and CBA. C4.5 performed the best with an
average 94.24% accuracy, while PRISM performed the worst with
an average accuracy of 78.76%.

Eventually, Mohammad et. al [2015] created a finalized list of 30
attributes that their experiments had shown were common among
phishing websites and could differentiate well between phishing
and legitimate websites. Following is a short description of each
attribute.

Address Bar Based Features

(1) Using the IP Address as opposed to the domain name.
Example: "http://127.0.0.1/example.html"

(2) Using an unreasonably long URL to hide the details that
are suspicious

(3) Using any URL shortening service such as TinyURL
(4) URL containing an "@" symbol. Browsers ignore content be-

fore this symbol, so attackers often place their false address
after it.

(5) If the characters "//" appear anywhere except directly after
the first "http://" or "https://", the user will be redirected to
another page.
Example: "http://www.real.com//http://www.fake.com"

(6) Using the "-" symbol.
Example: "http://www.wells-fargo.com"

(7) Having subdomains or multi-level subdomains. Having one
subdomain is classified as suspicious, but having two or
more is classified as phishy.
Example: "http://www.sites.google.com/view/phishing"

(8) Use of HTTP instead of HTTPs. If the URL does use HTTPS,
check to see if the issuer is trustworthy or not. Furthermore,
check to see the age of the certificate. Certificates less than
two years old are suspicious.

(9) The age of the domain registration. Anything less than one
year is phishy.

(10) The favicon (tab icon) being loaded from another domain
(11) Using a non-standard port. Certain ports like those reserved

for HTTP (80) and HTTPS (443) should be open, but ports
such as 3389 for Remote Desktop features should be closed.

(12) Using "http" anywhere in the domain.
Example: "http://https-www-chase.com"

Abnormal Based Features

(1) The Request URL of objects. The percentage of external
objects within the web page that are loaded from another
domain is a telling feature because in legitimate websites,
most of the Request URLs share the same domain as the
web page.

(2) The URLs of anchor HTML tags. In phishing websites, an-
chor tags mostly redirect to other domains.

(3) Overall percentage of links in meta, script, and link HTML
tags. Phishing websites tend to use significantly more links,
especially to other domains, within these tags than a legiti-
mate website would.

(4) Server Form Handler (SFH) containing the empty string or
"about:blank". This is suspicious because when a user sub-
mits a form, the form should do something of significance.
Furthermore, if the SFH redirects to another domain, this
is classified as suspicious.

(5) Forms triggering the "mail()" or "mailto:" function. Phishers
often redirect form submissions to their own emails using
these functions.

(6) Abnormal URL. The WHOIS database [11] contains infor-
mation about the entities registered to a particular domain.
Phishing websites often do not have their actual host name
included in the URL.

HTML and JavaScript-Based Features

(1) The number of page redirects. Most legitimate websites
redirect the user a maximum of one time.

(2) Phishers use a JavaScript trick of changing the status bar
on the "onMouseOver" event to show a fake URL.

(3) Disabling right-clicking. Phishers do this to prevent anyone
from viewing the source code of the web page.

(4) Using pop-up windows for forms. Legitimate websites will
almost never ask you to do this through a pop-up.

(5) Use of IFrames, especially those without borders. IFrames
are an HTML tag used to bring one web page into another,
and removing the border is a technique used by phishers
to clone websites.

Domain-Based Features

(1) The age of the domain. Most legitimate websites have do-
mains older than six months. This information is extracted
from the WHOIS database.



Automated Detection of Phishing Attacks using Machine Learning Techniques

(2) The DNS record, which is the system that points a registered
domain to the web page’s IP address. If the domain has no
DNS record, it is considered phishy.

(3) The traffic of the website. If the web page does not rank
among the top 100,000 websites by traffic on the database
provided by Alexa Internet [1], it is suspicious. If it is not
recognized by the database at all, it is phishy.

(4) The PageRank value, assigned by Google Search, attempts
to determine how important a website is. The vast major-
ity of phishy websites have no PageRank value, whereas
some can reach up to 0.2. Anything below 0.2 is considered
phishy.

(5) Whether or not the website appears in Google’s index [2]
(meaning it can appear in search results). Since phishing
websites are often accessible for very short periods, they
often are not indexed by Google.

(6) The number of links pointing to the website. Legitimate
websites usually have two or more links pointing to them,
whereas most phishing websites have zero.

(7) Parties like PhishTank and StopBadware [10] report lists
of the most popular phishing domains and IP addresses to
avoid. Any website that uses these domains or IP addresses
is essentially guaranteed to be a phishing website.

These features have underlying conditions that output a binary
or ternary value. For example, the second feature of the address bar-
based features, having an unusually long URL, has the following
rule: 

𝐿𝑒𝑔𝑖𝑚𝑖𝑎𝑡𝑒 (1), if𝑈𝑅𝐿 𝑙𝑒𝑛𝑔𝑡ℎ < 54
𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 (0), if 54 ≥ 𝑈𝑅𝐿 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 75
𝑃ℎ𝑖𝑠ℎ𝑖𝑛𝑔 (−1), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

These rules are then used to create the dataset which will be
used in the tasks outlined in the following section.

3 METHODS
3.1 Data Preparation
Mohammad et. al [2015] published a dataset containing 6,157 le-
gitimate URLs and 4,898 known phishing URLs which have been
broken down according to the 30 aforementioned attributes. Being
that each attribute is already a binary or ternary value, no cleaning
of the attributes themselves was required. However, the dataset
contained 5,206 duplicate rows out of the 11,055 total rows. This
was initially inflating my performance results because many of the
instances in the test set also occurred in the training set. In order
to account for this, I partitioned the data such that the testing set
contained only unique instances that do not occur in the training
set. The training set, 80% of the size of the whole dataset, contains a
significant amount of duplicates. These are not duplicate web pages,
but rather web pages with the same exact set of binarized features. I
decided to leave the duplicates in as I believe they are representative
of the real world and not due to an error. It is reasonable that many
websites behave the same way or have URLs with the same prop-
erties. Furthermore, I thought that perhaps these duplicate rows
would help to reinforce the learning of some of the models to be
tested. To test this theory, I ran all of my models with the duplicates
in and with the duplicates removed, ensuring that in both cases the

test set contained unseen instances. The models run with duplicate
training data performed significantly better in virtually all regards.
Therefore, it does not appear that these duplicate rows led to any
overfitting.

3.2 Model Training
Using the Scikit-learn, Pandas, and NumPy Python libraries, I
trained the following machine-learning models on the data.

(1) Gaussian Naïve Bayes. I used the default parameters.
(2) Decision Tree. I used the GridSearchCV hyperparameter

tuning technique to find that the entropy criterion and ran-
dom splitter were the ideal parameters.

(3) Decision Tree with AdaBoost. I again used the entropy cri-
terion and random splitter on the decision tree. I used 100
estimators.

(4) Random Forest. GridSearchCV revealed that the entropy
criterion, log2 max_features, and 150 estimators worked
best.

(5) Support Vector Machine. I used a C of 100 to strongly avoid
misclassifying training instances.

(6) K-Nearest Neighbors. My hyperparameter tuning indicated
that the l1 distance metric, distance weight function, and
10 neighbors were ideal.

(7) Logistic Regression. Tuning showed that the l2 penalty
norm and a C value of 0.1 produced the best results.

(8) Multi-layer Perceptron Artifical Neural Network with 1
hidden layer. My general testing found that a hidden layer
size of 256 worked well, along with the ReLU activation
function and the Adam optimizer.

(9) Multi-layer Perceptron Artifical Neural Network with 5
hidden layers. Similarly, I used five layers of size 256, again
with the ReLU activation function and Adam optimizer.

(10) Voting Ensemble of all of the above classifiers. Using soft
voting, where the class label is determined using an aggre-
gation of the predicted probabilities from each classifier,
outperformed hard voting (basic majority vote).

Furthermore, I applied dimensionality reduction techniques to trans-
form the data from 30 dimensions into 10. I then used a Support
Vector Machine to compare the performance of these techniques.

(1) Principal Component Analysis. PCA revealed that the first
10 components explain approximately 70% of the variance
in the data.

(2) Kernel Principal Component Analysis. I surmised that KPCA
may outperform PCA due to the data likely not being lin-
early separable.

(3) Autoencoder Neural Network. The encoder had 3 dense
layers (128, 64, 10), and the decoder also had 3 dense layers
(64, 128, 30). I used the Adam optimizer and Mean Squared
Error loss function to train the model for 100 epochs with a
batch size of 32.

My thought process was that if any of these dimensionality reduc-
tion techniques could beat the performance of the SVM that did
not employ dimensionality reduction, then perhaps dimensionality
reduction would be a useful technique to try on other classifiers.



Eric Waters

3.3 Minimizing False Positives
Although the dataset is reasonably balanced and therefore accuracy
is an important metric, the false positive metric is arguably more
important in the case of phishing detection. Please note that the
dataset uses "Legitimate" as the positive label and "Phishing" as the
negative label. For this reason, it may help to think of this task as
"Legitimate Website Detection" as opposed to "Phishing Detection"
when discussing metrics such as false positives. That being said,
a false positive would indicate that the URL is truly a phishing
website, but the model classifies it as legitimate. This is troublesome
because if this system is to prevent users from going to phishing
websites, the model would tell the user that the phishing website
is legitimate and they could proceed to have their credentials or
other information stolen. False negatives, on the other hand, are
less of an issue. In this case, the website is truly legitimate, but the
model would warn the user that this website could be a phishing
attack. Although it is still desirable to avoid these false negatives,
it is more important to avoid false positives. Naturally, the false
positive rates and false negative rates are a tradeoff. Attempting
to lower the rate of one will likely increase the rate of the other
and vice versa. This is because the model is essentially being told
to lean toward one side of caution. With my models, I instructed
them to lean towards the side of predicting that the URL is phishing
rather than legitimate. I tried this in three ways.

(1) Changing class weights on the machine learning models
that support it. These were Logistic Regression, Decision
Tree (with and without AdaBoost), Random Forest, and
SVM. Changing the class weights means that I am penaliz-
ing the model more for misclassifying instances of phishing.
The amount I weigh each class varied from model to model.
For instance, logistic regression produced the best results
when I penalized it 2x as much for misclassifying phishing
websites. However, the Decision Tree, Random Forest, and
SVM all performed best when I penalized it 100x as much.

(2) Recreating the Voting Classifier using the ML models with
class weights applied. For each model that could have class
weights applied, I replaced it in the Voting Classifier with
the modified version.

(3) Using probabilities to manually change the outputs of cer-
tain models. These machine learning models produce a
probability of the instance being each class. For example, it
might think a given testing point has a 60% chance of being
legitimate and a 40% chance of being phishing. Normally, it
predicts the class label of the class with the highest proba-
bility. However, for the best-performing models, I manually
overrode the predicted class label if the probability of the
instance being phishing was over a specified threshold. For
most models, this threshold was around 0.2, i.e., if there
was at least a 20% chance of the instance being phishing,
then I classified it as phishing. I used this technique on the
Multi-layer Perceptron, Random Forest (with and without
class weights applied), and the Voting Ensemble (with and
without the class weights applied).

4 RESULTS
For each machine learning model, I evaluated the performance
using several metrics.

(1) Overall accuracy. This is the number of correctly predicted
test instances over the total number of test instances.

(2) Precision. This is the proportion of instances classified as
legitimate websites that were truly legitimate websites. A
model with no false positives has a precision of 1.00. Since
my primary objective was to avoid false positives (identify-
ing a phishing website as legitimate), I primarily aimed to
maximize this metric above all else.

(3) Recall. This is the proportion of legitimate websites that
were correctly identified. Since I am training my models
to prioritize avoiding false positives, the recall metric will
reveal the downside of doing so: the number of false neg-
atives I accumulate as I misclassify legitimate websites as
phishing in an attempt to be over-cautious.

(4) F1-score. This is the harmonic mean of the precision and
recall and is typically a good overall indicator of a model’s
performance. However, in the case of phishing detection, I
am not too concerned with maximizing the f1-score. This
is because I would prefer a model with 0.99 precision and
0.90 recall to a model with 0.96 precision and 0.96 recall.
Although the latter may have a higher f1-score and in other
applications be considered a better model, in this case, I
want to avoid telling users that the website they are visiting
is safe when it is a phishing attack in reality. Again, the
consequences of false positives are much more drastic than
those of false negatives.

Therefore, my primary goal while training these models was to
maximize the precisionwhile keeping the recall to a reasonable level.
I glanced at the accuracy and f1-score to very quickly assess the
model’s general performance, but I was not attempting to maximize
those metrics. Below in Table 1 are the first 10 models that I trained
without any attempts to maximize the precision.

Table 1: Initial ML Classifier Performance Results

Classifier Accuracy Precision Recall F1

Naïve Bayes 0.63 1.00 0.31 0.47
Decision Tree 0.96 0.97 0.96 0.97
DT + AdaBoost 0.97 0.97 0.98 0.98
Random Forest 0.97 0.97 0.98 0.97

SVM 0.97 0.96 0.97 0.97
K-Nearest Neighbors 0.96 0.96 0.97 0.96
Logistic Regression 0.92 0.92 0.95 0.93

MLP (1 layer) 0.97 0.96 0.99 0.97
MLP (5 layers) 0.97 0.97 0.98 0.98
Voting Ensemble 0.97 0.98 0.98 0.98

Next, I attempted to use dimensionality reduction techniques to
beat the performance results of SVM. This was to test if dimension-
ality reduction would be a worthy path to pursue.



Automated Detection of Phishing Attacks using Machine Learning Techniques

Table 2: DR + SVM Performance Results

Classifier Accuracy Precision Recall F1

PCA + SVM 0.93 0.93 0.94 0.94
Kernel PCA + SVM 0.93 0.93 0.94 0.94
Autoencoder + SVM 0.91 0.91 0.91 0.91

Table 3 contains the results of the addition of class weights to
the models which supported it. An additional column, "penalty",
has been added to indicate the penalty applied to the model for
misclassifying a phishing website. The last row outlines the results
for the ensemble that was a result of replacing the original mod-
els with their newly weighted variants. The ensemble itself does
not have a penalty applied, so the field is left blank. The optimal
penalties were determined by trial-and-error testing.

Table 3: Effect of Class Weights on Performance

Classifier Penalty Accuracy Precision Recall F1

LR 2x 0.92 0.94 0.91 0.93
DT 100x 0.96 0.97 0.96 0.97

DT + Ada 10x 0.97 0.98 0.96 0.97
RF 100x 0.97 0.98 0.96 0.97
SVM 100x 0.96 0.98 0.95 0.96

Ensemble – 0.98 0.98 0.97 0.98

Furthermore, I applied the manual changes outlined in the Meth-
ods section. The threshold for switching the class label from "le-
gitimate" to "phishing" is specified in its own column. The optimal
threshold was determined by trial-and-error testing.

Table 4: Manually Changing Labels using Probabilities

Classifier Threshold Accuracy Precision Recall F1

MLP1 0.06 0.96 0.99 0.93 0.96
RF 0.23 0.97 0.99 0.95 0.97
RF 0.10 0.94 1.00 0.89 0.94
RF2 0.31 0.97 0.99 0.95 0.97
RF2 0.10 0.94 1.00 0.89 0.94

Ensemble 0.29 0.96 0.99 0.95 0.97
Ensemble 0.18 0.94 1.00 0.89 0.94
Ensemble3 0.46 0.98 0.99 0.97 0.98
Ensemble3 0.24 0.96 1.00 0.93 0.96
1 1-layer
2 Uses class weights (100x penalty)
3 Uses the modified models with weights (same Ensemble from Table 3)

5 DISCUSSION
The initial models outlined in Table 1 performed above my original
expectations. The f1-scores were in the 0.93-0.98 range, with the
exception of Gaussian Naïve Bayes. Curiously, Gaussian Naïve
Bayes achieved a precision of 1.00, but with a recall of only 0.31.

This means that it was being far too cautious and predicting that
the vast majority of test instances were phishing if it had any shred
of doubt. Despite having a lackluster accuracy of 0.63, I chose to
include it in the ensemble models because, in the case of a close call,
I would hope that the Naïve Bayes classifier’s lean toward the side
of caution would push the ensemble to predict that the instance is
phishing rather than legitimate. Although the precisions of other
models were still relatively good (0.92-0.97), I pushed to improve
them further.

Since the data had 30 dimensions, I thought that dimensionality
reduction might be worth exploring. The original SVM without any
dimensionality reduction had an f1-score of 0.97. Table 2 demon-
strates that dimensionality reduction does not result in better per-
formance for this particular dataset, at least with the SVM classifier.
The performance was so much worse that I chose not to attempt
dimensionality reduction techniques on any other classifier.

In Table 3, I was glad to see improvements in precision across
most models. They responded well to the increased penalty for
misclassifying instances of phishing. Most models saw a slight
increase in their precision, with a slightly higher drop in their
recall, which was acceptable.

What defines the best-performing model? Throughout the devel-
opment of these models, I was attempting to maximize the precision
while holding the recall to a respectable value. I hoped to achieve a
precision of 0.99 or 1.00, which is why in Table 4 the thresholds are
inconsistent. For each of the Random Forest and Ensemble classi-
fiers in Table 4, I used trial-and-error to find the lowest threshold
that would reach a precision of 0.99 and subsequently the lowest
threshold that would reach a precision of 1.00. Note that there was
no threshold that would bring the MLP classifier to 1.00, as it was
giving probabilities of 1.00 on too many misclassifications.

I believe that the contest for the strongest model is a toss-up
between the last two models shown in Table 4. As a reminder, these
models are Voting Ensembles (Soft Voting) consisting of:

(1) Gaussian Naïve Bayes
(2) Decision Tree, penalized 100x more for misclassifying in-

stances of phishing
(3) Decision Tree + AdaBoost, penalized 10x more for misclas-

sifying instances of phishing
(4) Random Forest, penalized 100x more for misclassifying

instances of phishing
(5) Support Vector Machine, penalized 100x more for misclas-

sifying instances of phishing
(6) K-Nearest Neighbors
(7) Logistic Regression, penalized 2x more for misclassifying

instances of phishing
(8) Multi-layer Perceptron with 1 hidden layer
(9) Multi-layer Perceptron with 5 hidden layers

The first model decided that the instance was phishing if the
model believed there was at least a 46% chance of it being phishing.
It achieved an accuracy of 0.98, precision of 0.99, recall of 0.97,
and f1-score of 0.98. The latter model decided that the instance
was phishing if the model believed there was at least a 24% chance
of it being phishing. It achieved an accuracy of 0.96, precision of
1.00, recall of 0.93, and f1-score of 0.96. If I had to choose between
the two, I would prefer the second, higher-precision model. This



Eric Waters

is because it is simply more cautious and sacrifices accuracy to
prevent false positives. Out of the 2,211 instances in the test set, it
onlymisclassified 5 instances of phishing and 87 legitimate websites.
In practice, this would translate to allowing approximately 0.22%
of phishing websites to go undetected and incorrectly warning the
user approximately 3.9% of the time that a legitimate website is
phishing. I would prefer that to the previous model, which allows
about 0.77% of phishing websites to go undetected and incorrectly
warns the user about 1.5% of the time that a legitimate website is
phishing.

6 CONCLUSIONS
Phishing attacks, despite their age, have only grown in popularity
in recent years [3]. As the internet also continues to grow in pop-
ularity, more and more users become vulnerable to having their
valuable personal information or resources stolen. As a result, there
is an increasing demand for highly accurate phishing detection
systems that can protect internet users from proceeding to mali-
cious websites. Although not the only solution, the employment
of machine learning techniques is a promising avenue for creating
such a detection system.

Related works [6, 7] have used the phishing dataset developed
by Mohammad et. al [2012] to train single-layer neural networks
and rule-based classifiers. However, some datasets naturally lend
themselves to certain machine learning models better than others.
It is often worth exploring several options to see which will perform
the best. Furthermore, in the case of phishing, special emphasis
ought to be placed on preventing false positives, i.e., telling the
user that a phishing website they are about to visit is legitimate
and allowing them to proceed.

By creating an ensemble of 9 different machine learning models,
some of which I tuned to prevent false positives, and then tuning the
outputs of the ensemble itself, I was able to achieve a false positive
rate of 0.22% while only allowing a false negative rate of 3.9%.
This model surpassed my initial expectations and outperformed
the other 26 models that I created. I believe that it performed best
because it incorporated a bit of each of the techniques that I used to
improve overall performance and minimize the false positive rate.

Improving the accuracy and precision of these phishing detection
models is vital for creating a safer internet. Furthermore, it can save
companiesmillions of dollars on average annually [3]. Thesemodels
can then be used in applications where phishing attacks occur, such
as browsers or e-mail applications. It is highly recommended that
everyone, even technologically sound users of the internet, utilize
anti-phishing technology to protect themselves. Akin to wearing a
seat belt, it is better to be always protected, even when the user is
highly confident in their abilities.

Future work on this topic should and will continue. Although
the 30 features developed by Mohammad et. al [2015] have proven
effective, they are certainly not every feature that could be con-
sidered. Analysis of more aspects of phishing websites that can
differentiate them from legitimate ones will serve to increase the
performance of phishing detection systems. Furthermore, I antici-
pate that academic entities and enterprises will both continue to
refine their machine-learning models in order to achieve the high-
est performance possible. And, as new machine learning models

or other classification techniques are undoubtedly devised in the
future, their newfound strengths should be immediately applied to
phishing detection systems in order to provide the best protection
for internet users.

REFERENCES
[1] Alexa Internet 2022. https://www.alexa.com/ Accessed: 2022-05-01.
[2] Google Index 2022. https://support.google.com/programmable-

search/answer/4513925?hl=en#:~:text=The%20Google%20index%20is%
20similar,and%20updates%20the%20Google%20index. Accessed: 2022-11-
30.

[3] Ponemon Institute LLC. 2021. The 2021 Cost of Phishing Study. Proofpoint, Inc.
[4] Rami Mohammad, Fadi Thabtah, and TL McCluskey. 2015. Phishing websites

dataset. (2015).
[5] Rami M. Mohammad, Fadi Thabtah, and Lee McCluskey. 2012. An Assessment

of Features Related to Phishing Websites using an Automated Technique. In-
ternational Conference For Internet Technology And Secured Transactions (2012),
492–497.

[6] Rami M. Mohammad, Fadi Thabtah, and Lee McCluskey. 2014. Intel-
ligent rule-based phishing websites classification. IET Information Se-
curity 8, 3 (2014), 153–160. https://doi.org/10.1049/iet-ifs.2013.0202
arXiv:https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
ifs.2013.0202

[7] Rami M. Mohammad, Fadi Thabtah, and Lee McCluskey. 2014. Predicting phish-
ing websites based on self-structuring neural network. Neural Computing and
Applications 25, 2 (2014), 443–458.

[8] PhishTank 2022. http://www.phishtank.com Accessed: 2022-11-25.
[9] Inc Proofpoint. 2021. State of the Phish: At a Glance. Proofpoint, Inc.
[10] StopBadware 2022. https://www.stopbadware.org/ Accessed: 2022-11-30.
[11] WHOIS 2022. https://who.is/ Accessed: 2022-11-29.

https://www.alexa.com/
https://support.google.com/programmable-search/answer/4513925?hl=en#:~:text=The%20Google%20index%20is%20similar,and%20updates%20the%20Google%20index.
https://support.google.com/programmable-search/answer/4513925?hl=en#:~:text=The%20Google%20index%20is%20similar,and%20updates%20the%20Google%20index.
https://support.google.com/programmable-search/answer/4513925?hl=en#:~:text=The%20Google%20index%20is%20similar,and%20updates%20the%20Google%20index.
https://doi.org/10.1049/iet-ifs.2013.0202
https://arxiv.org/abs/https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ifs.2013.0202
https://arxiv.org/abs/https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ifs.2013.0202
http://www.phishtank.com
https://www.stopbadware.org/
https://who.is/

	Abstract
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Data Preparation
	3.2 Model Training
	3.3 Minimizing False Positives

	4 Results
	5 Discussion
	6 Conclusions
	References

