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1 PAPER OVERVIEW
The paper "Big Data Analysis UsingModern Statistical andMachine
Learning Methods in Medicine" provides a thorough overview of
the use of statistical and machine learning techniques in analyzing
big data in medicine and behavioral science. The authors describe
how different types of data, such as clinical, genomic, and environ-
mental data, can be combined statistically to gain a more complete
understanding of human physiology and disease.

The paper starts by introducing the concept of well-known re-
gression analyses, such as linear and logistic regressions, which are
commonly used in clinical data analyses. It then discusses modern
statistical models, such as Bayesian networks, that have been de-
veloped to analyze more complex data. The authors also explain
how to use modern statistical models to represent the interaction
of clinical, genomic, and environmental data.

The paper emphasizes the importance of understanding the sta-
tistical tools available in medicine for analyzing large datasets.
Data from biomedical and behavioral science is becoming larger
and more complex with each passing year [34]. As a result, it is
critical to be aware of this trend and understand the statistical tools
available for analyzing these datasets.

The authors introduce big data in terms of clinical data, single
nucleotide polymorphism (SNP), gene expression studies, and their
interactionswith the environment. They explain how these different
types of data can be combined using statistical methods to gain
a more comprehensive understanding of human physiology and
disease.

The paper acknowledges some of the difficulties associated with
using big data analysis inmedicine, such as privacy concerns, ethical
considerations, quality control issues, missing value imputation
issues, and so on. It does, however, highlight several applications
of big data analysis in medicine, including personalized medicine,
drug discovery, disease diagnosis and prognosis prediction, and
healthcare delivery optimization.

The authors describe how decision trees, random forests, support
vector machines (SVMs), neural networks (NNs), and deep learning
can be used for big data analysis in medicine. They also discuss the
benefits and drawbacks of each technique.

The paper concludes with a detailed explanation of Bayesian
networks and their applications in medical big data analysis. The
authors describe how Bayesian networks can be used to model
complex relationships among various types of data and make prob-
abilistic predictions. They also go over the benefits and drawbacks
of using Bayesian networks for big data analysis in medicine.

Overall, this paper provides valuable insights into the use of
statistical and machine learning techniques in analyzing big data
in medicine. It highlights the importance of understanding these
tools for improving patient outcomes while acknowledging some
challenges associated with using big data analysis in medicine. The
authors also provide a detailed explanation

2 MACHINE LEARNING TECHNIQUES
2.1 Regression
Regression is a statistical technique to model how one or more
input variables impact a desired output variable.

2.1.1 Linear Regression. The idea of linear regression is to fit a
straight line to a set of data (see Figure 1) by minimizing the Sum
of Squares Error (SSE). Traditionally, a regression model creates a
line by discovering weights through the error minimization pro-
cess. This iterative procedure, in discovering weights, eventually
produces a line that can be thought of as a best fit for that particular
data. Using this derived line, a continuous output variable can be
predicted given one or more input variables [3]. Linear Regression
is often thought of as the most basic mode of machine learning,
and it is a common practice to deploy its abilities as a baseline for
understanding if there are basic relationships amongst features.

2.1.2 Logistic Regression. Logistic regression is similar to linear re-
gression in that it uses input variables to predict an output variable.
However, it differs in that the output variable is a binary value. It
decides the binary output variable by using Maximum Likelihood
Estimation (MLE) to fit a sigmoid function that ranges from 0 to 1
(see Figure 2). This sigmoid function represents the probability of a
given input data point belonging to the specified "true" class. If the
predicted probability is greater than 0.5, it is typically assigned the
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Figure 1: An example of Simple Linear Regression [25]

positive class label. Otherwise, it is assigned the negative class label.
Because it outputs a binary value, it is often used for classification
tasks [16].

Figure 2: A sigmoid function used to separate two classes [26]

2.2 Bayesian Networks
Bayesian Networks take advantage of some interesting properties
found in probability theory. Using Bayes’ theorem yields the ability
to make inferences about a system of random variables. To define a
network that is useful for making Bayesian predictions, a directed
acyclic graph is created, where the nodes in our system represent the
random variables and the edges represent conditional relationships
amongst the variables. To make use of the newly defined network,
the random variables must have probability distributions indicating
whether they are true or false, then the network can be used to
make inferences on our network.

Figure 3: Fire Alarm Inferencing (Bayesian Network) [19]

Take this Fire Alarm Network as an example seen in Figure 3. In
this network, the nodes are random variables representing different
factors as a result of a fire starting or an alarm being tampered with,
which are the super parents of our network. This means that all of
the probabilities are either a result of tampering or fire being true.
To make an inference on this system, it is sufficient to use Bayes’
theorem to ask a question such as: What is the probability that a
report is true given that a fire did not occur? These inferences can
help us generate an understanding of our feature space and how
likely certain scenarios are. In prediction, the Bayesian Network
is used as a tool to discover the likelihood of an event, and if the
probability is sufficiently higher than some threshold (depending
on the use case), the event is predicted.

2.3 K-Nearest Neighbors (KNN)
K-Nearest Neighbors is a machine learning algorithm used for both
classification and regression. It works by calculating the distance
of an input data point to all other data points and finding the
"k-nearest" data points (neighbors). For classification, the class
label of the input data point is often the majority class label of
its k-nearest neighbors. For regression, a continuous value can be
predicted by averaging the specified target variable of the k-nearest
neighbors [28]. A visualization of K-Nearest Neighbors can be seen
in Figure 4.

Figure 4: The KNN class boundaries for K=3 (Iris Dataset) [28]

2.4 Conditional Logistic Regression
In certain scenarios, a modification to logistic regression might
yield more sufficient results, especially when using statistical tools
to ensure the regression is performed fairly. Common issues with
classical regression techniques include the lack of handling bias
of different population samples, and in the case of highly critical
systems like medicine, accounting for treatment as part of a case
study requires configuration of the original logistic regression. In
CLR (Conditional Logistic Regression), there are two main prop-
erties that separate it from the classical model: stratification and
matching [1]. In particular, CLR uses these techniques to limit the
amount of data being evaluated when performing the regression
on certain conditions. In stratification, trial subjects are partitioned
into sample populations by a factor other than ’received treatment’.
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This ensures that the treatment vector doesn’t overpower the other
important features being measured as a contributor to the results.
In matching, CLR reduces the bias in treatment effect analysis by
comparing the results of individuals with certain characteristics,
in medical use cases, this can potentially mean comparing against
individuals in a similar demographic.

2.5 Multifactor Dimensionality Reduction
Dimensionality reduction refers to the process of transforming
high-dimensional data into fewer dimensions in order to reduce
complexity. A popular dimensionality reduction technique is Prin-
cipal Component Analysis (PCA), which eliminates the least signif-
icant attributes of the data. Multifactor Dimensionality Reduction
(MDR), on the other hand, takes a different approach to reducing di-
mensionality. Rather than eliminating features from consideration,
it combines features in a strategic manner. MDR was specifically
designed to detect gene-gene interactions [22, 34].

2.6 Polymorphism Interaction Analysis
Similar to Multifactor Dimensionality Reduction, Polymorphism
Interaction Analysis (PIA) also reduces dimensionality by combin-
ing features in such a way that those combinations best predict
the outcome. It primarily differs from MDR in that it uses the per-
centage of misclassified instances and the Gini index (a measure of
feature importance) to score the interactions of the features. Fur-
thermore, PIA uses ten-fold cross-validation, a method that splits
the data into ten components and iteratively trains and tests the
data on different subsets of the data in order to estimate the model’s
performance [20].

2.7 Support Vector Machines (SVMs)
Support Vector Machines [7] are a machine learning technique
typically used for classification. They classify data points by cre-
ating a hyperplane, called the decision boundary, that maximizes
the margin between the classes. The side of the hyperplane that a
testing point falls on determines its class label.

2.7.1 Recursive Feature Elimination (RFE). In this extension to tradi-
tional SVMs, the training process will involve reducing the features
iteratively until our model only considers the most important fea-
tures for creating separable hyperplanes. This is done by initially
training an SVM classifier using the entire feature space, and then
ranking the features. Features are ranked based on the weights of
the hyperplane, which is the solution to the SVM primal problem.
After ranking all SVM combinations of features, we select the sub-
set of the feature space which includes only the highest-ranking
features (in other words we remove the worst-ranking feature from
all future SVM training). This process can be repeated recursively
until removing features doesn’t increase the accuracy of our model
or until there aren’t any more features to eliminate [17].

2.7.2 Recursive Feature Addition (RFA). In recursive feature addi-
tion, we take a similar approach to RFE in that we are retraining
an SVM classifier on many different feature spaces and comparing
their outputs until an optimal subset is found. In this algorithm,
we first start by training several SVMs to only look at one feature,
and compare their outputs. We select the best SVM feature space

(in the initial stage this feature space has only one dimension) and
recursively add all combinations of features. Then the best ranking
SVM feature space is selected and this process is recursively iterated
until accuracy doesn’t improve or a threshold is defined. The main
difference between RFA and RFE is how we start the recursion, in
RFA our final step produces a significantly larger feature space than
that which we started with, while in RFE the final step usually re-
sults in a minimal feature space for producing accurate predictions
[13].

2.7.3 With local search (local). SVM with local search takes the
initial hyperplane obtained by the traditional SVM algorithm and
attempts to optimize it by searching for a better solution in the
vicinity of the original solution. It does this by slightly adjusting
the original hyperplane and reevaluating its performance. If the
new performance is superior to the original performance, the new
hyperplane is kept and the algorithm continues until it converges
on some specified criteria. This algorithm is often effective but
also computationally expensive and unrealistic to run on massive
datasets [6, 34].

2.7.4 Genetic Algorithm (GA). Like with other SVM enhancements,
we start offwith our default SVM andmake amodification that finds
the best feature space for training the model. This time, however, we
start by selecting a population from our data and randomly selecting
a set of features to train the model on. Then, in terms of genetic
algorithms and genetic coding, we select the members with the
highest fitness (fitness score is once again determined by the results
of the hyperplane weights) and use this population to continue
iterating. A genetic algorithm is deployed that uses the selected
subset of features in the high-fitness population to determine which
additional features to examine and include or exclude in the next
generation of training. This is called selection in evolutionary terms
and the selection function for a genetic algorithm greatly depends
on the specific use case. In the Genetic Algorithm, there is more
randomness inherent in the selection and generation phases, yet
this provides the advantage of finding an optimal feature space
without needing to recursively add and subtract a feature at a time.
After the next generation of features is evaluated, we can then
compute the fitness of our child population, it is trivial to stop
iterating after our results converge regardless of running more
generations [31].

3 FINDINGS OF THE PAPER
Traditional problem-solving approaches in the case of data analysis
for Bio-Informatics, involving clinical data, Gene-Gene interac-
tions, and Gene-Environment interactions involve usage of linear
equations on the modeled variables [18]. This approach has its ad-
vantages and disadvantages, the primary issue being the modeling
of causality between the modeled variables.

With multiple methods developed over the years to analyze
Clinical, Gene-Gene, and Gene-Environment data, a few of which
have been discussed in the previous section, the optimal method
to represent causality between variables and produce predictive
models is Causal Bayesian Networks (Causal BNs) [23].

Causal BNs have demonstrated the ability to extract relationships
between modeled variables based on causality, even on extremely
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large data sets with a high number of variables to be modeled. This
is due to the fact that Causal BNs have a significant number of
advantages over Traditional Bayesian Networks that allow them
to model relationships between variables optimally when causality
is involved. This allows them to produce predictive models from
clinical and genome data with high levels of accuracy [33]. The
most important advantages Causal BNs hold over Traditional BNs
are:

• Ability to predict interventions in the network
• Allowance for cycles in the network, which translates into

the ability to handle feedback loops
• Handling of unobserved variables that in turn affect other

variables in the network by adding them into the network
as new nodes

The usability of Causal BNs can be explained using an example
network.

Figure 5: An example Bayesian Network

In the example given in Figure 5, it can be derived that Lawns
can become wet either through Rain or by turning on a sprinkler.
It can also be noted that the neighbor does not own a sprinkler
system. When our lawn is wet, there is a possibility that it might
be green.

There are a few types of sub-networks that help model causality
between variables by a direct connection, with the parent node
directly influencing its children. There are three main sub-network
types, which we can derive from the example in Figure 5, namely
Converging Arcs, Diverging Arcs, and Serial Arcs.

In Converging Arcs, as shown in Figure 6, multiple parent nodes
converge into a child node, in this case, either a Sprinkler (Node
A) or Rain (Node B) may cause our lawn to become wet (Node C).
Thus, A and B become dependent on the case that C occurs.

In Diverging Arcs, as shown in Figure 7, a single parent node
influences multiple children, in this case, Rain (Node A) may cause
our lawn to become wet (Node B) and/or cause the neighbor’s lawn
to become wet (Node C). Thus, B and C become independent of the
case that A occurs.

In Serial Arcs, as shown in Figure 8, a parent node influences
its child node, which in turn influences its child node. In this case
Sprinkler (Node A) may cause our lawn to become wet (Node B)
which in turn may cause our lawn to become green (Node C). Thus,
A and C become independent of the case that B occurs.

Figure 6: Sub-network Type A: Converging Arcs

Figure 7: Sub-network Type B: Diverging Arcs

Figure 8: Sub-network Type C: Serial Arcs

The usage of these subnetwork types allows Causal BNs to ex-
press causality in intuitive ways with a myriad of combinations
possible. This provides to be useful when large datasets are involved,
proving to be invaluable for Bio-Informatical Data Analysis. Causal
BNs as a statistical tool are therefore optimal to model complex clin-
ical parameters, Gene-Gene interactions, and Gene-Environment
interactions from large datasets of clinical or genomic data.
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4 APPLICATIONS
There are many applications for the machine learning techniques
presented. Four are highlighted in this paper: clinical data, gene
expression data, single nucleotide polymorphisms (SNPs), and epi-
genetic regulation of the genome.

4.1 Clinical Data
For applications with clinical data, linear regression and logistic
regression were highlighted. Linear regression was successfully
used to analyze the association between implementing electronic
health record and ED visits, hospitalizations, and office visits for pa-
tients with diabetes mellitus [27]. A study also performed research
comparing initial tumor size and reduction rate when treated with
targeted agents. By using both univariate and multivariate linear re-
gression, the study determined that the rate of tumor size reduction
was correlated to the initial size for individual tumors [35].

There were also several applications for logistic regression. One
application was found in studying the effectiveness of a multidisci-
plinary surgical safety checklist. Implementation of the checklist
was analyzed using logistic regression and found to reduce sur-
gical complication and mortality [8]. Logistic regression also was
used in a study of children diagnosed with urinary anomalies. The
study found that there were certain risk factors that were associated
with an increased risk of kidney anomalies, including gestational
diabetes, preexisting diabetes, and maternal renal disease [29]. In
another case, logistic regression was used to characterize the most
common medical problems in in-flight medical emergencies. This
study also analyzed the type of assistance that was provided on-
board [24].

4.2 Gene Expression Data
Gene expression data was also highlighted as a field that could have
useful applications of machine learning technology. Specifically,
gene clustering analysis within large gene expression datasets has
been shown to be a useful application of the k-Nearest Neighbor
algorithm [10, 15, 21, 30]. Bayesian networks also have a useful ap-
plication within gene expression data analysis for modeling causal-
ity. These are useful for performing inference and can be used to
model gene expression level regulation [34].

4.3 Single Nucleotide Polymorphisms
Single nucleotide polymorphisms (SNPs) are a DNA variation due
to altering a single nucleotide in a genome. They must occur within
at least 1% of the population and are the most common DNA varia-
tion. Interaction between SNPs is believed to play a significant part
of the development of complex diseases. Logistic regression has
an application here for linking SNPs to disease outcome [34]. In
addition, multifactor dimensionality reduction (MDR) and polymor-
phism interaction analysis (PIA) have been found to have utility in
determining SNP combinations that have disease-predicting inter-
actions [11, 12, 14]. Finally, support vector machines (SVMs) have
been used to determine interaction among SNPs [5].

4.4 Epigenetic Regulation of the Genome
Epigenetic regulation of the genome is another field in which these
machine learning techniques have potential applications. This regu-
lation takes place when methyl groups are added to cytosines in the
DNA. The effect of this is that DNA expression can be changed with-
out modifications to the DNA. This process was recently shown to
take place in fully differentiated cells [4]. As a result, these interac-
tions must be considered when studying gene expression. Bayesian
models have application here, and they were used to study how
DNA methylation patterns are transmitted across cell division [9].

5 POSSIBLE EXTENSIONS
The integration of machine learning approaches in medicine and
biomedical sciences holds great promise for improving our un-
derstanding of disease mechanisms, identifying new therapeutic
targets, and developing personalized treatments. There are several
possible extensions of statistical machine learning approaches in
medicine and biomedical sciences that go beyond those covered
in the paper. Three examples are the Naive Bayes classifier, the
Decision Tree, and the Random Forest.

5.1 Naive Bayes Classifier
Naive Bayes is a popular classification algorithm in statistical ma-
chine learning that is widely used in medicine and biomedical
sciences for various applications, such as disease diagnosis, drug
discovery, and medical image analysis.

The Naive Bayes classifier is based on Bayes’ theorem, which
states that the probability of a hypothesis H given some observed
evidence E is proportional to the probability of the evidence given
the hypothesis multiplied by the prior probability of the hypothesis,
divided by the probability of the evidence:

𝑃 (𝐻 |𝐸) = 𝑃 (𝐸 |𝐻 )𝑃 (𝐻 )
𝑃 (𝐸)

In the case of classification, we can use Bayes’ theorem to cal-
culate the probability of each class given some observed features
or variables. The "naive" assumption in Naive Bayes is that the
features are independent of each other given the class label, which
simplifies the calculation of probabilities.

For example, in medical diagnosis, we may want to classify a
patient as having a certain disease or not based on their symptoms
and medical history, such as in the privacy-preserving classification
of breast cancer data as benign or malignant [32]. We can use
Naive Bayes to calculate the probability of each class (disease or
no disease) given the observed symptoms and medical history. We
first estimate the prior probabilities of each class based on the
frequency of the disease in the population. Then, we calculate the
conditional probabilities of each feature given each class, based on
the frequency of each symptom and medical history in patients
with and without the disease. Finally, we use Bayes’ theorem to
calculate the posterior probabilities of each class given the observed
features and classify the patient as having the class with the highest
probability.

One advantage of Naive Bayes is that it is computationally effi-
cient and requires a small amount of training data compared to other
classification algorithms. It also performs well in high-dimensional
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feature spaces, which is often the case in biomedical data analysis.
However, the naive assumption of feature independence may not
always hold in practice, and the performance of Naive Bayes can
be affected by imbalanced class distribution or irrelevant features.

5.2 Decision Tree
A decision tree is a powerful statistical machine learning approach
widely used inmedicine and biomedical sciences. It is a non-parametric
method that makes predictions based on a series of binary deci-
sions or splits, which divide the dataset into smaller subsets until a
terminal node or leaf is reached. Each split is based on a particular
feature or attribute of the data, and the decision is made by selecting
the feature that maximizes the information gain or minimizes the
impurity measure of the data.

In medicine and biomedical sciences, decision trees are com-
monly used in areas such as clinical decision-making, diagnosis,
prognosis, and treatment planning. For instance, decision trees have
been used to predict the risk of developing certain diseases based on
patient characteristics, such as age, sex, family history, lifestyle fac-
tors, and biomarkers. They have also been used to identify the most
effective treatment options for specific patient subgroups based on
their clinical and molecular profiles.

One of the advantages of decision trees is their ability to han-
dle both categorical and continuous variables, as well as missing
data, without the need for data normalization or transformation.
Additionally, decision trees can handle nonlinear relationships be-
tween variables and are easily interpretable, making them useful
for generating insights and guiding clinical decision-making. They
are also relatively computationally efficient, making them suitable
for large datasets with complex structures.

However, decision trees can be sensitive to small changes in the
dataset and prone to overfitting, particularly when the number of
features is large. To address these issues, ensemble methods such as
random forests and boosting can be used to improve the accuracy
and robustness of the models.

In conclusion, decision trees are a valuable tool in statistical
machine learning approaches in medicine and biomedical sciences.
They offer a flexible and interpretable framework for making pre-
dictions and generating insights from complex and heterogeneous
datasets. However, careful attention must be paid to avoid overfit-
ting and to optimize the performance of the models.

5.3 Random Forest
Random Forest is a popular machine learning algorithm that can
be used in various applications, including medicine and biomedical
sciences. It is a type of ensemble learning method that combines
multiple decision trees to improve the predictive performance of
the model.

In medicine, Random Forest has been used in various areas such
as disease diagnosis, prognosis, and drug discovery. For example,
Random Forest has been used to predict the risk of developing
diseases such as cancer, diabetes, and heart disease. It has also been
used to identify potential drug targets, predict the efficacy of drugs,
and classify medical data using feature ranking [2].

In biomedical sciences, Random Forest has been used in areas
such as genomics, proteomics, and metabolomics. For example, Ran-
dom Forest has been used to predict protein-protein interactions,
classify gene expression data, and identify biomarkers for diseases.

Random Forest is a versatile algorithm that can handle both
categorical and continuous variables, and it can also handle missing
data. It is also robust to overfitting, which is a common problem in
machine learning.

Overall, Random Forest is a powerful tool in statistical machine
learning approaches for medicine and biomedical sciences, and it
has the potential to provide valuable insights and predictions that
can improve patient outcomes and advance scientific research.
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